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 

Abstract—There are several canonical cases of the turbulent 

wake created by the movement of a body at constant velocity 

through a fluid. A new case is that of the zero-angular-momentum 

wake, which is relevant to contra-rotating propellers. This is 

treated using an extension of the approach used for the zero-

linear-momentum wake. The theory indicates that the wake 

broadens with distance astern according to a power law with 

exponent 1/6. The fluid velocities decrease rapidly with distance 

with an exponent -5/6.   

 
Index Terms—Contra-rotating Propeller, Turbulent Wake. 

I. INTRODUCTION 

HE evolution  of turbulence behind a moving ship or a 

propeller is important for surveillance. The characteristics 

of a wake may provide useful information about the ship.  

Unfortunately the theory tends to be difficult and analytical 

solutions can only be found for a few simple cases [1]. 

Moreover, the solutions are only valid far from the source of 

the turbulence. For theoretical purposes, the relevant flows are 

axisymmetric. They are the linear-momentum-wake, in which 

the mean flow is along the wake axis, the swirling or angular-

momentum wake (e.g. [2]), in which the mean flow is in the 

azimuthal direction and the zero-linear-momentum wake [3]. 

 For example, the first two can be applied to a single 

propeller, which will produce both thrust and swirl. The zero-

linear-momentum wake can be applied to a submarine moving 

at constant velocity. If there is minimal production of surface 

or internal waves, the drag from the hull may be compensated 

almost exactly by the propeller thrust; the total linear 

momentum in the overall wake is nearly zero. 

 The contra-rotating propeller comprises two screws rotating 

in opposite directions on one axis. The fluid is accelerated 

along the axis by the first screw, which also causes the fluid to 

swirl around it. The swirl represents a significant loss of 

energy with a reduction of the propeller efficiency. The second 

screw is located in the contracted race of the first screw and 

typically has a somewhat smaller diameter. The swirl from the 

first screw creates extra lift forces on the blades of the aft 

propeller and the effect is to recover a good part of the swirl 

energy. Therefore the net angular momentum in the wake is 

small. 

 The characteristics of a turbulent wake depend on the way 
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the turbulence is created; the flows retain a memory of the 

initial conditions. For example, in a pure linear-momentum 

wake, which might be created by a moving jet, the wake is 

dominated by the constancy of linear momentum. This is 

because, when linear momentum is transferred to fluid at the 

wake edge, that fluid becomes a part of the wake itself. 

The basic theory of wakes has been confirmed by laboratory 

experiments [4]–[6]. However, in practice the canonical 

turbulent wake cases are usually an incomplete description of 

the wake and there are some problems interpreting the details. 

For single screws, the wake exhibits both finite mean linear 

and angular momenta and it is necessary to combine the linear-

momentum wake and the angular-momentum wake theories as 

has been done in [7]. For a contra-rotating screw, the linear-

momentum wake must be combined with the zero-angular-

momentum wake. 

II. THEORY 

The theory of turbulent wakes can be based on finding a 

constant of the motion and then applying a dimensional 

analysis. 

An idealized source for the linear-momentum wake is a 

cylindrical jet of incompressible fluid and the velocity is 

constant over its cross section. For the angular-momentum 

wake it is a rotating cylinder of fluid with a constant angular 

velocity. The idealized source for the zero-linear-momentum 

wake is a pair of concentric cylinders with fluid flowing 

axially within them but in opposite directions.  Similarly the 

idealized source for the zero-angular momentum wake is a pair 

of concentric cylinders with fluid rotating azimuthally in 

opposite directions. Such a wake would be created by a pair of 

concentric paddles rotating in opposite directions. The angular 

velocities of the paddles would be such as to yield zero 

angular momentum across the fluid in the wake. For simplicity 

the angular velocities of the fluid would be constant with 

radius in each cylinder but with opposite signs in each of them. 

The starting point for the theoretical analysis of wakes is the 

Navier-Stokes equation applied to a viscous Newtonian fluid. 

A Newtonian fluid is a fluid for which the shear stress is 

always proportional to the velocity gradient. To solve practical 

problems, this may be augmented by the conservation of mass 

and an equation of state but, for water wakes at normal 

temperatures, the equation of state is not required. 

Neglecting pressure gradients, the Navier-Stokes equation, 

which relates the velocity of the fluid, u, at position x as a 

function of time t, provides what is basically a momentum 

equation, which expressed in Cartesian coordinates and using 
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the summation convention is: 
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where  is the kinematic viscosity. 

The conservation of mass is expressed by the continuity 

equation for an incompressible fluid and, with no fluid sources 

or sinks, this just corresponds to zero divergence of the 

velocity: 
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The fluid velocity can be regarded as a sum of a mean 

component and a random component, i.e. 

 kkk uuu   (3) 

where the over-bar indicates a mean. According to this 

definition, the random component must have zero mean. 

Inserting the velocity given by (3) into (1) and (2) and taking 

the mean again yields: 
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where the angle brackets also indicate a mean. The last term is 

known as the kinematic Reynolds stress. 

The ratio of the last two terms can be expressed as a 

Reynolds number. When the Reynolds number is very small, 

the last term can be neglected and the equation represents 

laminar flow with dissipation. When it is very large, as is 

invariably the case for a ship or propeller, the final term 

dominates; in general uk and ui are correlated.  

The Reynolds stress term itself is sometimes modeled using 

a symmetric “eddy viscosity” tensor,  [3]. This is related to 

the stress by: 
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In principle the eddy viscosity could vary with position but 

when the stress in (4) is replaced using (5), the equation 

structure is similar for both the laminar and turbulent flows. It 

is often assumed that the eddy viscosity is diagonal, isotropic 

and is effectively constant over a significant part of the wake. 

In the following, a cylindrical coordinate system (r, , z) is 

used. The fluid velocity components are (ur,, u, uz). In a 

purely swirling wake ūr is very small and ūz is constant. If we 

transform to a coordinate frame moving with the source at 

velocity, U, along the z-direction, the mean wake variables do 

not vary in time and, for very large Reynolds numbers, (4) 

with (5) becomes: 
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In cylindrical coordinates and ignoring all terms in ūr and ūz 

this becomes: 
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Following the same type of approach as Birkhoff and 

Zarantonello [3], we introduce a second moment of angular 

momentum, M, given by: 

 




0

22 rdrurrUM   (8) 

Now we have for the axisymmetric mean wake: 
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Integrating the first term by parts twice gives: 

 018  rdrur   (10) 

The left hand side is zero because it is proportional to the 

net angular momentum in the wake. Similarly, the second term 

on the right hand side of (9) is zero. Therefore M is not a 

function of z and, under the simplifications adopted here, it is 

conserved along the wake. 

To continue, the simplest procedure is to use dimensional 

analysis. From (6) and (8), the wake width, b, is a function 

only of M/(U) and z/U. We have: 

 

6/1

2 














U

Mz
b




 (11) 

where  is a constant of the order of unity. In (8) we can 

replace the upper limit of the integral by b and then b
5
ū is 

constant. Therefore, because b increases as z
1/6

, the mean 

azimuthal velocities ū fall off as z
-5/6

. 
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