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 

Abstract—This report summarizes the theory of turbulence for 

the turbulent wake in the far field. A tensor development is 

adopted so that the results can be applied readily to any 

coordinate system, including cylindrical coordinates. Most of the 

results for the axisymmetric wake are not new but the 

formulation is useful for generalizing to other applications. 

However, it is shown that the angular velocity of a purely 

swirling wake is approximately Gaussian as a function of radius. 

 
Index Terms—Turbulence, Wake. 

I. INTRODUCTION 

URBULENCE occurs in the wake behind a ship and is 

important for satellite surveillance using radar because it 

can reveal information about the ship and its propulsion 

system [1]. In the case of submarine, the propeller mixes the 

water and, in the presence of internal layers, this mixing can 

collapse the wake leading to a production of internal waves 

[2]. These phenomena can be understood by solving the 

appropriate equations using either algebraic methods or by 

numerical simulation. In either case some basic equations are 

needed in various coordinate systems. The most common 

coordinate system is cylindrical, which directly applies to the 

axisymmetric wake. 

 The Navier-Stokes and the continuity equations are the 

starting points for the theory of turbulence in an 

incompressible fluid [3]. In the following we are concerned 

primarily with high Reynolds numbers and the far wake; 

corresponding approximations simplify the theory. For 

example, at high Reynolds numbers, viscosity can be ignored. 

The Reynolds number in a wake immediately aft of a ship of 

length 100 m traveling at 10 m/s in water with a kinematic 

viscosity of about 10
-6

 m
2
/s is about 10

9
. Within the wake 

itself, it is appropriate to define another Reynolds number 

involving the wake diameter and the flow mean velocity 

relative to the ocean; this decreases with distance astern from a 

typical value of 10
8
. In principle, this will limit the length of 

the wake over which the approximations are valid. 

II. THEORY 

The continuity equation for an incompressible fluid with 

velocity u is: 

 0 u   (1) 
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The Navier-Stokes equation for an inviscid fluid is: 
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where p is the (scalar) pressure and  is the constant density 

[3]. The left hand side of this is a material or convective 

derivative. 

In this report tensor calculus is employed, e.g. [4]. The 

tensor form of these equations, which is valid in any system of 

coordinates and involves covariant derivatives, is: 
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where the left hand side of (4) is an intrinsic derivative, which 

in turn may be expressed in terms of a covariant derivative, 

and g is the determinant of the metric tensor g. In the far wake 

and in the absence of internal layers, it can be assumed that the 

pressure term in the equation of motion (4) is negligible; we 

can just set the intrinsic derivative to zero.  Therefore the 

equation of motion for the fluid in the far wake assumes the 

very simple form: 

 0
t

u k




 (5) 

 It is customary to regard the fluid velocities as a sum of 

mean and fluctuating components. The mean of the 

fluctuations is of course zero, i.e. 

 
kkk uuu   (6) 

Inserting this into (5) and taking the mean value yet again 

gives: 

 0,,  jk

j

jk
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where both the bar and the angle brackets indicate a mean. 

Now the contracted covariant derivative of the kinematic stress 

tensor can be expressed as: 

  j

j

kjk

jj

jk uuuuuu ,,,  (8) 

However, the last term is zero because it contains as a factor 

the divergence of the velocity (3); the wake equation becomes: 

 j

jkjk

j uuuu ,,   (9) 

On the left hand side we have the intrinsic derivative of the 

mean velocity vector and on the right we have a term 

analogous to the pressure term in (4); the latter is a contracted 

covariant derivative of the kinematic stress. 

 The left hand side of (9) can now be converted to a form 

suitable for a particular choice of coordinates; for any velocity 

vector, u: 
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where {} indicates a Christoffel symbol. 

 Consider the case where the source of the turbulent wake is 

moving at speed U in the negative direction along a straight z-

axis. In a frame moving with the source, uz  U + uz; in this 

new frame and in the far wake where the velocities in the fluid 

are very small in comparison with U, other second order terms 

are zero or can be ignored. The partial derivative with respect 

to time is zero and the left hand side becomes: 
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 The right hand side of (9) can be expressed [4]: 
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 Consider the wake created by a source moving at velocity U 

along the negative z-axis in cylindrical coordinates (r, , z) = 

(x
1
, x

2
, x

3
). The metric is given by: 

 22222 )()()()( dzdrdrdxdxgds ji

ij    (13) 

so that the metric tensor is diagonal. The only non-zero 

components of the Christoffel symbol are [4]: 

 

r

r

1

21

2

12

2

22

1




























 (14) 

 At this point we can study the axisymmetric case where the 

mean flow is parallel to the z-axis and there is no swirl. This 

simplifies the basic equations further because ū
2
 = 0 and there 

is no dependence of the mean flow on the azimuthal variable, 

.  Therefore the z-component (i = 3) of (9) becomes: 
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However, the second term (j = 2) in the sum on the right hand 

side is zero because there is no azimuthal variation in the mean 

quantities and in the far wake the third term (j = 3) is small and 

can be absorbed into the left hand side. Therefore we have the 

simplified form: 
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 Now the physical components of the velocity are related to 

the contravariant components by a factor (gii), with no 

summation; for the first and third components this is just one 

and for the second, which does not occur, it is r. Therefore 

(16) becomes: 
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 Next we can derive a simplified equation for the purely 

swirling axisymmetric wake. In this case we are interested in 

the second (azimuthal) component of the velocity; the mean of 

this component is not a function of  and in addition ū
3
 = 0: 
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Making similar approximations as for the previous case yields: 
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Expressing this in terms of the physical components of the 

velocity gives: 
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 The simplified results in (17) and (20) are identical to those 

stated by Reynolds [5]. 

 In the far wake, the wake expands very slowly with time and 

its evolution can be described in terms of the diffusion of 

eddies. This suggests that the evolution of the wake resembles 

ordinary diffusion and the simplest approach involves a linear 

approximation in which the kinematic stress is proportional to 

velocity gradients. Thus, to a first approximation, the 

proportionality factor can be represented by an eddy viscosity 

tensor. In practice this would depend on the wake width, in the 

manner of Prandtl’s mixing length theory [3] but, at a given 

cross section in the fluid, the wake dynamics are dominated by 

the movement of eddies. Therefore, especially in the far wake, 

it can be regarded as almost constant. 

 We expect the principal axes of an eddy viscosity tensor of 

an axisymmetric wake to coincide with the axes of a 

cylindrical coordinate system and so the eddy viscosity should 

be diagonal. To simplify the derivation we also assume that it 

is isotropic so that it can be regarded as a scalar constant, . 
Therefore, taking account of the symmetry of the stress, we 

have: 
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Then (9) becomes: 

 j

j

k

iki

k

jkji

j uguguu ,,,, )(    (21) 

Noting that the covariant derivative of the metric tensor is zero 

and that the last term on the right involves the divergence of 

the velocity and is also zero, we have: 

 
i
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jkji

j uguu ,,   (22) 

In Cartesian coordinates, the right hand side is obviously the 

Laplacian of a vector. 

There are two ways to proceed that lead to identical results. 

Either (22) can be evaluated directly or it can be expressed in 

terms of physical components by writing out the Laplacian of a 

vector in cylindrical coordinates. We choose the former route 

and briefly describe the latter in the Appendix. 

Using the methods described in [4], it can be shown that: 
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This can be evaluated using (14). 

For example, consider the axisymmetric swirling wake. If i 

= 2, we have: 
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The right hand side of (22) is found by weighting these terms 

by the diagonal components of the metric tensor and adding 

them together. The result is: 
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 Now the three terms in the second row are either zero, 

because of the azimuthal symmetry, or are small. Therefore, 

with the usual approximations for the far wake, this can be 

written: 

 


























r

u
r

rrz

u
U

2
3

3

2 1
  (26) 

 In a formal sense, this equation describes spherically 

symmetric diffusion in a four dimensional space and it can be 

verified by substitution that a solution is: 
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Because the component u
2
 is the angular velocity of the fluid 

in the swirling wake, this demonstrates that the angular 

velocity profile in the far wake is close to Gaussian. (The 

factor in front of the exponential, which is a function of z, is 

not relevant because the eddy viscosity varies along the wake.) 

This conclusion confirms the assumptions made in the 

theoretical treatment of a combined axial and swirling wake 

[6]. 

 For the axisymmetric purely axial wake we need to consider 

the z-component of the flow (i.e. i = 3) and most of the 

Christoffel symbols in (23) are zero. Neglecting small terms as 

before, we find: 
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This formally represents diffusion in two-dimensions. The 

solution of this again involves the same Gaussian factor for ū
3
, 

which is just ūz. As has been described in [7] and [8], this is 

consistent with numerical simulations and experiments though 

there are some deviations from the exactly Gaussian profile as 

perhaps expected. 

III. CONCLUSION 

A simplified equation has been derived for the turbulent 

wake in generalized coordinates. This has been applied to the 

axisymmetric wake for two canonical cases: that of the purely 

axial flow and that of the purely swirling flow. Previous results 

have been recovered. 

It has also been demonstrated that the angular velocity far 

astern in a swirling wake should have a radial profile that is 

close to Gaussian.  

 

APPENDIX 

 The Laplacian of a vector can be found in other than 

Cartesian coordinates through the vector identity [4]: 
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The physical components of the gradient, divergence and curl 

of a vector A can be expressed in any curvilinear coordinate 

system using standard methods [4]. After some tedious 

calculations, it is found that for cylindrical coordinates we 

have: 
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 It is easy to see that (28) is recovered for the axial wake but 

for the swirling wake u must be replaced by r, where  is the 

angular velocity, u
2
. Using the middle identity in (30), it can 

be confirmed that the right hand side of (25) is indeed 

consistent with the Laplacian of a vector. 
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