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The Bernoulli Hump Generated by a Submarine 

J.K.E. Tunaley 
 

Introduction 

Submarines have the advantage that they are covert. Nevertheless they can produce 

various effects at the sea surface and, though these may be extremely small, they offer a 

potential for detecting the vessel. The purpose of this paper is to re-examine earlier work 

on the Bernoulli hump. Some of the original work appears to be due to Hershey [1]. This 

includes a description of the theory and a comparison with model tests. The model is 

based on the Rankine ovoid, which is also called a “doublet” and consists of a single 

source and sink. The methodology is employed by Stefanick [2] to prepare tables of the 

amplitudes of the Bernoulli hump created by various submarine types and of the 

amplitudes of the Kelvin wake along the submarine tracks. These tables are reproduced 

by Daly [3] in a subsequent study on submarine detectability. 

 

In this study, more details of the theory are provided and the scope of the modeling is 

broadened. 

The Hull Model 

Unlike submarines from WW2, which spent most of their time on the surface, today’s 

submarines need to surface much less frequently and their shape can be optimized for 

sub-surface speed and endurance. Wave-making resistance is usually not thought to be an 

issue so that a pointed bow is not necessary. 

 

The hull can be represented as a distribution of sources and sinks so that the fluid flow is 

close to that over a real hull. Because of approxmate axial symmetry over each transverse 

section of the main hull, we can employ a simple distribution over its longitudinal axis. 

This is a sub-class of the “thin ship” approximation. At any longitudinal position, the 

sources and sinks forward of that position must introduce or absorb fluid in such a way 

that the streamlines in the absence of the hull resemble the streamlines when the hull is 

present.  

 

The simplest hull model representing a submerged submarine is a doublet, which consists 

of a point source of fluid near the bow and an equal sink at the same depth near the stern. 

Because a vessel does not normally introduce additional fluid into the medium, the source 

and sink strengths must cancel. The source strength is chosen so that one of the 

streamlines corresponds to the actual submarine hull. Apart from extreme simplicity, the 

doublet has the advantage that, at sufficient distances, the flow closely approximates that 

of any hull. However, at distances of the order of the submarine length or less, the 

approximation may be poor. 
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The source strength, S, can be related to the flow through the submarine cross section; 

assuming a cylindrical hull of maximum radius, a, usually at or near mid-ships and 

adopting the thin ship approximation, we have: 

 0

2UaS  , (1) 

where U0 is the submarine speed. The source and sink are typically separated by a 

distance, d, of the order of the submarine length, L. 

 

The positions of the sources should be chosen so that the flow at the bow and stern are 

correctly located. At the bow, this occurs approximately when the forward flow from the 

source just cancels the undisturbed flow speed and yields a stagnation point at the 

extreme forward position. For the doublet a similar situation pertains at the stern. It is 

soon verified that the source should be positioned on the axis, at an approximate distance 

a/2 behind the most forward position of the hull. The sink at the stern should be placed 

forward of the extreme stern position by the same distance, i.e. 

 adL  . (2) 

 

Figure 1 shows the streamline corresponding to (half) the doublet hull for a submarine of 

length 100 m and beam 10 m (a = 5 m). It is symmetrical across a transverse plane at 

mid-ships. The calculation simply involves the vectorial addition of the free stream 

velocity to the velocities from the source and sink.   The hull is blunt at both bow and 

stern and the mid-ships section is long and almost uniform. This shape corresponds quite 

well with the hulls of many real submarines except for the stern, which is likely to result 

in excessive turbulence due to boundary layer separation.   

 

 
Figure 1. Streamline corresponding to the hull represented by a doublet.  

 

To minimize viscous drag, modern submarine hulls have a tear drop shape. The bow is 

blunt and the hull tapers off towards the stern. The shape usually exhibits approximate 

cylindrical symmetry and resembles a three dimensional version of an aircraft wing. The 

design is very streamlined and one of the effects is that boundary layer separation and the 

effects of turbulence are reduced. This results in a low acoustic signature as well as low 

drag. (However, this shape is far from optimal if wakes of gravity waves are important. 

The Kelvin wake and internal wave wakes fall into this category.) 

 

The first submarine to adopt a tear drop hull was USS Albacore. Figure 2 shows a profile 

of a hull model with this shape. (As before, the sail has been omitted.)  It is cylindrically 

symmetric about the longitudinal axis. The bow comprises a hemisphere attached to a 

tapered section that consists of a parabola of revolution. We call this part of the model a 

Wigley hull, because its derivation is similar to that of the Wigley hull familiar from 

surface ship modeling. If the overall length is L and the radius of the bow section is a, 
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which is equal to half of the submarine beam as well as half the submerged draft, the 

length of the Wigley section is L – a. Denoting the distance from the bow as x, the radius, 

r, of the Wigley section can be expressed as: 
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Figure 2. Model submarine hull. 

 

At any longitudinal position, the sources and sinks forward of that position must 

introduce fluid so that the streamlines in the absence of the hull resemble the streamlines 

when the hull is present. Therefore, if the speed is U0, we have: 

   0

2Urdx  , (4) 

where σ is the source density along the central submarine axis. Differentiating yields for 

the Wigley part: 
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As with the doublet, the hemispherical bow section can be represented by a single source. 

This is situated at a distance of a/2 from the extreme forward position. The dimensions of 

σ and S are m
2
/s and m

3
/s, respectively. 

 

 
Figure 3. The source distribution for the model hull of length 100 m and beam 10 m; the 

speed is 5 m/s. The area under the bow spike is about 392.7 m
3
/s. 
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Figure 4. Streamlines calculated from the source distribution. (U0 = 5 m/s.) 

 

Figure 3 shows the source distribution for the model. This exhibits a large spike 

associated with the blunt bow followed by a smoothly varying distribution corresponding 

to the Wigley section. It has been verified that the integral over the source distribution is 

zero, which is required because the submarine does not introduce any fluid. 

 

The representation is approximate but we can determine if there are discrepancies by 

plotting a few streamlines derived from the distribution. This is done in Figure 4. The 

effective hull shape lies along the streamline that starts on the horizontal axis: it closely 

resembles the original hull shape in Figure 2 but there are minor unimportant differences. 

We can conclude that this type of source distribution is a very simple and effective means 

of representing this type of submarine hull. 

The Bernoulli Hump 

If the submarine generates a disturbance in the fluid that is static with respect to the 

submarine, its wake is also static in the submarine’s reference frame. The Kelvin wake is 

created by the flow around the hull and, except for turbulence, falls into this category. At 

the fluid surface it can be divided into two parts: the first is the near-wake, which is 

called the “Bernoulli hump”, and the far wake, which is the usual Kelvin pattern of 

waves. 

 

The fluid flow near a submarine at depth can be calculated directly from the distribution 

of sources and sinks as has been done for Figures 1 and 4. Near the surface, account must 

be taken of the surface boundary conditions. The calculated estimates of the surface 

displacements and velocities are simplified if the equations are linearized. Hershey [1] 

shows that linearization introduces only small errors of a few percent in cases of practical 

interest. This is to be expected as the surface disturbances are typically quite small being 

of the order of centimeters or less and millimeters per second. Moreover, the agreement 

between his measured and predicted Kelvin wake results is typically within a factor of 

two; the discrepancies are attributed to the neglect of turbulence, which significantly 

alters the flows around the stern of the submarine. 

 

The treatment below is similar to Hershey’s except for the coordinate system and the 

adoption of the thin ship approximation. The latter is not expected to create significant 

errors especially when the estimates apply to generic hull shapes; it renders the treatment 

much simpler. 
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The problem is usually expressed in terms of the velocity potential, φ, which is related to 

the fluid velocity, u, by: 

 u . (6) 

For a source of strength, S, in an infinite fluid, the velocity potential at radius r is given 

by: 

 
r

S




4
 . (7) 

Taking the gradient gives the expected radial component of the velocity: 
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A right handed Cartesian coordinate system is used with the x-axis to the right, the y-axis 

into the page and the z-axis is upwards. The submarine is regarded as stationary with the 

water flowing past it parallel to the negative x-axis. The velocity potential must satisfy 

Laplace’s equation within the water and two boundary conditions must be satisfied at the 

surface. The first boundary condition is a kinematic condition.  In this case the shape of 

the hump is stationary in the reference frame of the submarine so that, in this frame, the 

component of fluid velocity normal to the surface must be zero. A full analysis of the 

Kelvin wake shows that the near wake is associated with the horizontal component of the 

flow, while the vertical component is associated with the Kelvin wake waves. 

Accordingly for the near wake, we consider the vertical velocity component at the surface 

to be zero. This condition can be satisfied if an image of the submarine is introduced 

above the water surface to cancel the vertical velocity. The presence of the image doubles 

the surface horizontal velocities. 

 

The second condition is that the pressure on the surface is constant atmospheric pressure. 

Bernoulli’s equation can be written in terms of the surface height perturbation, ζ, which is 

measured positive upwards: 
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where the free stream velocity, U = -U0i , is along the negative x-axis and g is the 

acceleration due to gravity. On discarding all high order quantities, this becomes: 
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Therefore, taking into account the image by inserting a factor of 2, we have: 
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For a single source and its image, (7) and (11) yield: 
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If the source is at depth h, r becomes: 

 2/1222 )( hyxr  . (13) 
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For the source in a doublet model corresponding to a submarine of maximum radius a, 

we have: 
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Forward of the source, x is positive and the water surface is elevated. Between the source 

and sink the surface is depressed and after the sink it is elevated again. The maximum 

depression is often, but not always, mid-way between the source and sink. If the origin of 

coordinates is placed over the submarine centre and the diameter of the submarine is D, 

the net surface elevation from the source and sink is given by: 
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Hershey effectively partitions this result into two. The first is a factor with the dimensions 

of length and the second is a dimensionless shape factor, f(x, y, h, L): 
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The tables of Stefanick and Daly are based on (16) with f set at a constant value of 0.8, 

which is adopted from an example in Hershey’s report. This introduces significant 

inaccuracy in some scenarios. 

 

It is straightforward to calculate and plot the elevation as a function of position for an 

Ohio-class submarine directly from (15). The length of the submarine is 170 m and its 

mean diameter is roughly 12 m. Figure 5 shows the elevations for depths of 30 m and 100 

m for a speed of 10 m/s. 

 

 
Figure 5. Profile of the Bernoulli hump directly above the Ohio-class submarine (y = 0) 

using the Rankine ovoid model. Solid line: 30 m depth. Broken line: 100 m depth. 
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At patrol speeds of 2.5 m/s, it is clear from (15) and Figure 5 that the surface elevations 

are millimeters or less. 

 

The Bernoulli hump can be found using the new streamlined model in Figure 2 using the 

same method and integrating over the source distribution. The corresponding result is 

shown in Figure 6; the speed is again 10 m/s. The graph exhibits similar gross features 

but is no longer symmetrical across mid-ships. 

 

 

 
Figure 6. Profile of the Bernoulli hump directly above the Ohio-class submarine (y = 0) 

using the streamlined model. Solid line: 30 m depth. Broken line: 100 m depth. 

 

In both Figures 5 and 6, the Bernoulli humps are better described as Bernoulli 

depressions. The depression directly above the submarine is to be expected because the 

water between the submarine and the surface is moving faster and, as is well known (for 

example by comparison with the Venturi effect), this tends to reduce the pressure in this 

region. Because the atmospheric pressure is constant on the surface, the pressure 

difference corresponds to a depression in the water level.  

 

The elevations are much less than those in [2] and [3] but the peak-to-peak amplitudes of 

the disturbances are of a similar magnitude to the elevations quoted. Stefanick quotes an 

elevation of 19 cm for the Ohio-class submarine moving at 20 knots (about 10 m/s) at a 

depth of 30 m and 1.6 cm for the submarine at 100 m depth. 

Conclusions 

The tables in [2] and [3] seem to overestimate the maximum surface elevation. However, 

these elevations could possibly be interpreted as peak-to-peak disturbances. The 

maximum peak-to-peak disturbance for a large submarine can reach about 17 centimeters 

when it is traveling at high speeds at shallow depth; otherwise at normal patrol speeds 

and depths, the maximum peak-to-peak disturbance is of the order of a millimeter or less. 
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The Bernoulli hump is just one part of the Kelvin wake and it should be appreciated that 

Kelvin wake waves will be generated behind any disturbance. These will modify the 

profiles so that the profiles generated here are only a part of the description of the wake. 

A study of submarine detectability requires the complete theory.   

 

When compared with ambient wave heights even in low sea states, it appears that the 

Bernoulli “hump”, which is spread out over distances of the order of 100 m, is usually 

difficult to detect. 
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