SAR Contributions to Ship Detection and Characterization

J.K.E. Tunaley

London Research and Development Corporation, 114 Margaret Anne Drive, Ottawa, Ontario K0A 1L0 1-613-839-7943

http://www.london-research-and-development.com/

Outline

- Ship Detection
 - Robustness, Timeliness, Development Costs, K-distribution
- Detection Threshold
- Wakes from Surface Ships and Internal Wave Wakes
- Space-Based AIS Performance

Ship Detection

- Clutter Statistics
 - Remove the ship from a clutter cell
 - ■Cut out the ship
 - Handle statistically
- Estimate Clutter Parameters
 - Choose a statistic
 - ■Moments (simple)
 - Logarithms

Threshold Calculation

- Density by steepest descents
 - J.K.E. Tunaley, "K-Distribution Algorithm", Sept. 2010 (<u>www.london-research-and-development.com/K-Distribution Algorithm.Version2.pdf</u>)
 - Avoid Bessel functions
- Distribution/Threshold
 - Suggest using expansion with polynomial correction in shape parameter and number of looks

Probability Density Comparison

THRESHOLDS OF DETECTION

		L=1		L=4	
PFA	ν	Accurate	Approx.	Accurate	Approx.
10-9	0.5	214.7	214.8	91.59	91.62
10-9	5.0	47.49	47.50	18.796	18.800
10-9	50.0	24.24	24.24	8.841	8.842
10-6	0.5	95.43	95.55	46.40	46.43
10-6	5.0	25.69	25.70	11.263	11.267
10-6	50.0	15.337	15.338	6.128	6.128

Parameter Estimation

- Fisher information
 - J.K.E. Tunaley, "Ship Detection", December 2010, (<u>www.london-research-and-development.com/Ship Detection.Version3.pdf</u>)
- Mean can be estimated reasonably accurately
- In spiky clutter shape parameter tends to require 10,000 resolution cells using moments

Detection Thresholds

Fig. 8. Detection thresholds for PFA = 10^{-9} , L = 4 and N = 100 (—), N = 1000 (—), N = 10,000 (—) and $N = \infty$ (—).

Ship Image Information

- Position
- Length (may be poor estimate)
 - Heavy ship motion in high sea states
- Velocity (from wake displacement)
 - Ocean going ships usually create visible wake
 - D.M. Roy and J.K.E. Tunaley, "Visibility of the Turbulent Wake", March 2010 (www.london-research-and-development.com/Visibility of Turbulent Wakes. Ver2a.pdf)
 - Wake characteristics depend on propulsion system; screw number and sense of rotation

Internal Wave Wake

Typical Brunt-Vaisala Vertical Profile.

$$\left| \frac{d^2 Q}{dz^2} + k^2 \left(\frac{N^2}{\omega^2} - 1 \right) Q = 0 \right|$$

Zeroth and First Modes

Sinuous Modes

Varicose Modes

Frequency-Wave Number

Determines phase and group velocities

Crest Pattern

Zeroth mode crest pattern for a source moving horizontally at 5 m/s in the above profile.

Internal Wave Wake Conclusions

- From Crest Pattern
 - Ship velocity from angle of wake (if strength of layer known)
 - Maximum B-V frequency
- From Amplitudes (Tentative)
 - Layer thickness/Position of vessel in layer
 - Vessel size

Space-Based AIS Performance

Problems

- Signal Collisions and Range Overlap
- Message 27 solution with AIS channels 3 & 4 (ITU-R M.2169)

FFI Theoretical Model

- Based on signal corruption with one or more signal collisions
- Extension to multiple collisions
 - (www.london-research-and-development.com/Space-Based-AIS-Performance.pdf)

Multiple Collision Model

q is the probability that a collision can be tolerated

ITU-R.M2169

Theoretical Performance

Space-Based AIS Conclusions

- Model 1 is based on the receiving system resolving a fixed number of collisions
- Model 2 is based on the system resolving an average number of collisions
- Model 1 more or less consistent with simulations in ITU-R M.2169

END

Thank You All!